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PRINCIPAL NOMENCLATURE

[Note: Equation numbers are given below where it may help to identify the

point of first introduction of a symbol.]

A(x,y) Factor in f(Z) (36)

A0  Constant factor in 4, (46)

b(x) iA(x,O)/x(X,EH) (40)

C(y) Body curvature (48d)

F Froude number, U/(gl)' / '
f(Z) Complex potential in outer solution (31)

G(X,Y; ,n) Green function used in inner region (63)

g Gravitation constant

H(x) (i/E)x(free-surface elevation)

H(x;c) (i/E)x(free-surface elevation in "naive expansion") (9)

H(x;t) (i/E)x(free-surface elevation of wave motion) (9)

Hj(X;c) j-th term in expansion of H in inner region (55)

K(x) dO(x)/dx (14)

L Typical body dimension

n Unit normal to body surface, directed into the body

U Forward speed

Constant = - C(O) 0xx(x0 ,O) (48c)

W(Z) Complex function defined in outer solution (33)

X O/K (27)

x Horizontal Cartesian coordinate

x0  x-coordinate of downstream intersection of body and undisturbed

free surface or, approximately, of downstream stagnation point

Y y/c in outer solution (13); [y- cH(x)]/c 5  in inner solu-

tion (52)

Y Y-H in outer solution (27)

y Vertical Cartesian coordinate

Z Z+iY in outer solution (30)

Exponent of E in outer solution (10),(11)

Small parameter of the problem = F2  U 2/gL

r)j(x;,;) Term in expansion of l(x;c) (11)

* -v-
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0(x) Rapidly varying phase function in ouLer solutLio (12)

6(x) cO(x) (12)

Source density on body surface (b5)

v Nondimensionai wave number = 1/u

D(x,y) Velocity potential of complete problem

D(Xy;F-) Velocity potential in "naive expansion" (8)

(xy;E) Velocity potential for wave motion (8)

$j(X,Y;c) Term in expansion of i in inner region (54)

Y~xy;0,Y) Term in expansion of t(x,y;E) in outer region (10)

p0(x,y) Velocity potential in double-body problem (48e)



I. INTRODUCTION

There have been two kinds of methods published for treating thl,

ship/wave problem for a ship moving at very low speed:

(1) First Ogilvie (1968) used an order-of-magnitude argument to

obtain a linear free-surface condition that would lead to the prediction

of a plausible wave motion at very low speeds. There were two essentJhl

points: (a) the waves should have very short wavelength, and (b) the

waves should propagate on the nonlinear streaming flow around the correspond-

ing double body. In the linear wave problem, the apparent cause of wave

generation is an effective prLcssure distribution on the free surface, which

arises mathematically because the double-body flow does not really satisfy

the precise free-surface conditions. Ogilvie treated only the case of a

fully submerged two-dimensional body. Later, Baba and Takekuma (1975) extended

this concept to solve the problem of a three-dimensional surface-piercing body,

e.g., a ship. They went so far as to derive a wave-resistance formula based

on this approach. Maruo and Fukazawa (1979) extended this approach further,

using a coordinate transformation to simplify the analysis.

(2) Keller (1974) developed the first ray theory for the low-speed

problem. Inui and Kajitani (1977) used a procedure based on a method of

Ursell's (1960), which is essentially a ray method. Later, Keller (1979)

further developed his ray method with systematic asymptotic expansions, and

he applied his theory to a thin ship and a special class of "str2amlined"

ships. In Keller's ray theory, the waves are apparently generated only at

the stagnation points on the body; the amplitude and phase of the waves

are then modified gradually by the nonuniform flow around the double body.

There are difficulties in both methods. In the first, the linear

free-surface condition can be written in such a way that the terms on, say,

the left-hand side are rapidly varying wavelike quantities, while those on

the right-hand side are slowly varying in space. The latter are completely

known; they represent the fictitious pressure field imposed on the free

surface. The situation can be compared to the much simpler problem cited

by Keller (1979) (see his Appendix A):

-1-
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u"(x) + k2 u(x) = q(x) ,

where g(x) is analogous to the fictitious pressure distributior:. If k

is very large, wave solutions of this differential ecuation repren, L very

short waves. The general solution of the above equation can, of , , E

written out explicitly, and it can then be expand,,d asymptotically ff 0
k . If the domain of x is - ' x ' + , tite only part of the d.;ymy ., t<

expansion that represents waves comes fr m the iitemoqeneous -rbl-.n, >r-d its

amplitude and phase can be determined c r.tra] ly oniy' if som.how they are

known at some point, possibly at infinity. In addition, there is a ptirticular

solution, which can be reprurientd asymptotically as a series in inw*,rs,,

powers of k 2 ; it represents a slowly varying solution if g(x) is

slowly varying (as assumed). If the domain is restricted to, say, 0 x <

the wave part of the solution depends entirely on the values of Q(x) and

its derivatives at x = 0 and on the two boundary conditions imposed on

u(x) So we can say that the generation of waves in such a case is unaffected

by the function g(x) except in a neighborhood of x = 0. This raises

a doubt about the fundamental supposition of the first method, namely, that

the waves are generated (mathematically speaking) by the fictitious pressure

distribution on the free surface. All that matters is the behavior of 9(x)

near x = 0.

Dagan (1972) pointed out that the base flow on which the waves propagate

should not be just the double-body flow, as assumed by Ogilvie and others, but

at least two terms in the "naive expansion," which is the expansion that is

obtained if the problem is expanded formally and strictly in terms of power

series in the Froude number. Keller (1979) arrived at the same conclusion

and noted further that then the fictitious pressure distribution vanishes from

the wave problem. That is, the free-surface condition becomes homogeneous.

In fact, in Keller's (1979) ray theory, the wave part of the velocity 5

potential function satisfies the Laplace equation, which is homogeneous, as

well as homogeneous free-surface and body boundary conditions. Thus any

solution that is found can be multiplied by an arbitrary constant. Keller

introduced a so-called "excitation coefficient" for certain simple special

cases. Still, his method fails near the stagnation point of the double-body
flow: From the dispersion relation, the wave number becomes inifinte there,

S



and the amplitude of the way s becemt.s ilfinit L UU. 1im 4(:ke,, .:; K'. I ---I himself

pointed out, the generation ot wavtes in tht. shurt-wav, r-rob]en 0-, nds essentiiJly

on conditions at the boundary ,olnt (consider again the .-imple differentiail-

equation problem cited above), the failure of the ray-Lheorv assurr, ain near

a stagnation point seems to be crucial.

We present here the second part of a :tudy to resolv the se questis -s.

The f rst part is rxep~orted by Ogilvie aiAl Chen (1982); it will be, referred to

subsequently simply as "I". They d- i iv' d " noilhomo~eneous budv boundary condit ion

for the wave part of the potential functiUn. Their free-surface cond.tiun is

homogeneous, as required from tihe work of Kuller. The nonhomogeneity of the

body boundary condition is, as we shall show, adequate for determininu the

solution without any arbitrary additive or multiplicative quantities.

We use the method of matched asymptotic expansions to solve the low-speed

problem in two dimensions. Our outer region is a thin layer near the free

surface, far behind the body (in terms of wavelength). We use the generalized

WKB method to determine the nature of the wave motion in this region; this

method is very similar to a ray method. Then we formulate a near-field

problem, applicable to a very small region near the stagnation point. Con-

siderations of the flow properties near a stagnation point are found to be

sufficient for determining the near-field solution completely. Then matching

to the outer solution permits the latter to be determined as well.

The final formula for the wave resistance, Equation (89), is surprising:

Wave resistance is proportional to U4 8 , where U is the forward speed. We

believe that this is the correct asymptotic relationship, although it is not

likely to be useful to a naval architect. It clearly has no range of validity

in U in which its predictions overlap those from conventional wave-resistance

analyses. What is still needed is a small-U solution that gives this formula

as U - 0 and gives the results of conventional linear thoery as U

There is an even stronger contrast between the low-speed theory and

conventional linear theory in the case of a submerged body. (The low-speed
- 1/Utheory predicts that wave resistance is proportional to e as U -- 0 .)

9
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Tulin (1982) has produced ani exact theory that b-ridqes ; t.:. I'.jfKS

much more difficult to find a comparatly general fheury fur is, cil

surface-piercing body.

IL



II. OUTER SOLUTION BY THE WAB MET1TOD

We want to find a velocity potential LU.7(x,y) for the streaming flu., past

a two-dimensional body that intersects the free surface. The stren !r has speed

U in the positive-x direction. The undisturbed tree surface lies on th, x

axis, with the y axis directed upwards. We take Lhe origin of coordinatf:

inside the body in such a way that the intersections of the body and the

undisturbed free surface are located at '-x¢,0) and (xq,G) . he latter is

the one of primary interest in this ra-_pi, since it lies on the dowrnstreal ,Ie

of the body. All length diner.ion, have been normalized with respect to L

any convenient characteristic length of the body. The small parameter of tJc

problem is taken as

F2 = U2/gL , (i)

where g is the gravitational constant and F is a Froude number. The shape

of the free surface is given by a relationship y = EH(x) , where H(x) is to

be determined as part of the solution of the problem.

The statement of the problem is as follows:

[L] xx + y = 0 in the fluid domain; .2)

[H] H(X) = q. _ D2(

y-EH (x)

[K] Py = eHxpx on y = cH(x) ; (4)

[F] (D + CfPx(xx +2 x(y xy +Dyy = 0 on y = EH(x) ; (5)

[B] n= 0 on the body; (6)an

[R] IP - x - 0 as x- -w and/or y- -n . (7)

These are the same as in (I), although the [K] condition was not explicitly

used there. Either the [F] condition or the [K] condition is redundant.

We assume that the solution can be divided into two parts:
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V'(.,y) = '1kx,y;;) + (x, ; ; (8)

H(x) = (x;') + ii(x;') .

The first part, rep.resented by (x, y; i) and 1,(x;,) ,is the jo-:.al~etli~

'xpansion (see (I)); it i t':e forcal solution that is obtained by -imn'y -ub-

stituting a power series in c into the conditio (2) - (7). It does r~t

represent a wavelike motion, althouqh, there is a corresponding free-surface

deformation near the body, which vanidbe- downstream as well as upstream. The

other terms in (8) and (9) represent tr-a. wave motions (suggested by the nota-

*tion ). e further assumu that the wavc .!part of the solution can be

expanded as follows:

4 (x,y; F) % t"+1Q1(x'y;u,,Y) + 7a+2P 2 (x,y;CX) + .. ; (0)

H(X;c) % canI(x;0) + E+ 1
T2(x;0) + ... (11)

Three new quantities have been introduced:

(i) a is a real number greater than unity. In (I), it was taken as
1 . Actually, that is simply the smallest possible value of a
that leads to a linear problem for the wave motion. Now we must
use the nonhomogeneous boundary condition developed in (I) to
determine the correct value of a . Note that the difference in
the powers of E between (10) and (11) results from the [H] con-
dition, (3)

(ii) 0(x) is a rapidly varying phase function, which we shall also

write in the form
L

0(x) = O(x)/C (12)

We shall assume that O(x) is slowly varying in the sense that
its derivative is of the same order of magnitude as 0 itself.

(iii) Y is a stretched coordinate:

Y = y/C (13)

Effectively, we treat this as a multiple-scale problem, x and y being used

to describe changes that occur on a scale comparable to the dimensions of the

body, 0 and Y being used to describe the details on the scale of the wave-

length. We imply here that the generated waves have wavelength that is O(E)

This is valid in the outer region, which means a region many wavelengths away

from the downstream stagnation point. The implication is not valid very near

to the stagnation point. The latter case is discussed in the. next section.
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The expansions (10) and (11) are called pe,' :.;z&cd VAK) expansions. The

functions Oi and ni all represent wav motions that are superposed on a

nonuniform, nonwavelike base flow given by P and H

Let us define

K 0 = (14)
dx

We note the following formulas for differentiations:

a = a+ f x + [K/E] + a-- {t2x+ K/ ] } + (15)
a D a (P+ _+_{_* + 1l/ ] y} + (15)

dH dHay = X+ Es jx + [K/]Til } +  -y+2x+ [K/cj2(} + ... (17)

Now we substitute (8)-(9) and (10)-(11) into the conditions of the problem,

starting with the Laplace equation (2). Then we rearrange terms according to

powers of E and set the coefficient of each power separately equal to zero.

From the coefficient of c-i , we obtain:

[L] K2 0 1 00 + iyy = 0 . (18)

Similarly, from the coefficient of ca , we obtain:

[LI 200+ 2yy = - {(K10)x + K 1ex + 24lyy} " (19)

The letter subscripts indicate partial or total derivatives, as appropriate.

(For example, Kx = dK/dx , whereas 4x = 3 /@x

Next we substitute into the CHI condition, (3). Initially, all functions

of y and of Y must be evaluated on cH(x) and on H(x) , respectively.

Then we expand these functions in Taylor series as follows: 4 (and its deri-

vatives) is expanded with respect to y = £H , whereas $i is expanded with

respect to y = 0 and Y = H . (The last is permissible if, as assumed,

a > 1.) We note that, from the definition of the naive expansion,

4y (x, H) = eHxx (x, EH) (20)



From the coefficient of c' in (3), we obtain:

[H] Y(X,0) - K(x) x(x,cH)$1 0 (x,O;0,H) (21)

Similarly, from the coefficient of . , 1

[H] =- xfK 2( + Hx  Y 1 on y 0 , Y =H (22

Here and throughout this section, the notation " y = 0 ", as in (22), refers

only to ;i . As already mentioned, an6 as indicated explicitly in (21), we

evaluate i on y = eH.

Following the same procedure with the [K] condition, (4), we obtain;

[K] =Iy K(Dxni 0  on = 0 Y = H (23)

[K] + x + = + KHX¢Io + KDxf2l - on (24)
l y y x 0Y') 20 yY :H

We can eliminate ni between (21) and (23) (or, alternatively, start with

the [F] condition, (5)). Then the 4I problem is given by the following:

[L] K 25 10 0 + iyy = 0 in y _ 0 , Y _ H ; (18)

[F] Oly + K2 0  = 0 on y = 0 , Y = H . (25)

Then we eliminate 12 between (22) and (24), which, together with (19), gives

the 2 problem:

[L] K 2 -2 00 + = - {(KP 10 )x + K$1 0 x + 24iyy} in y < 0 , Y < H ; (19)

[F] 2y + K 2  = - $1y + &111xnlx + Mx4 l - Hyy - K4PX4lxo

22-- 2- y=0, (26)
K H$100y - K xHxo1yo - 4 yyn on Y =

Now let us solve the problem stated in (18) and (25). The independent

variables are 0 and Y ; we can consider x and y as if they were para-

meters. By a minor change of variables, we transform the first equation into

the Laplace equation. Let

X(
X0/K , Y = Y-H . (27)

[
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Then (18) and (25) become:

OIXX + iy = 0 in y < 0 , Y < 0 ; (28)

1y +  x2IXX = 0 on y= , Y 0 (29)

The slight change from Y to Y in (25) has enabled us to formulate a prob1ler!.

with a free-surface condition given on the X axis.

We introduce complex variables Z -a-A f(Z)

z = x + iY , (30)

= Re{f(Z). (31)

(Of course, f also depends on x and y , but we continue to treat the

latter as parameters.) The Laplace equation, (28), is automatically satisfied

when is defined as in (31). The free-surface condition, (29), can now be

rewritten:

Re (x,eH) f" + if' = 0 on y=0 , 0 (32)

Since we consider x (and thus H(x) ) as being fixed in (32), this condition

is valid for all X . Thus we can define a new function

-2(,
W(Z) = OI(x ,eH)(Z) + if'(Z) , (33)

which can be continued analytically into the upper half plane as follows:

W(Z) = - W(Z) , (34)

where the bars here denote complex conjugates. Since W(Z) is analytic in

the entire lower half of the Z plane, we now conclude that it is analytic in

the entire plane. Thus it must be a constant. From (29), its real part

vanishes, and, without loss of generality, we set its imaginary part equal

to zero also. Then

2f",(Z) + if'(Z) = 0 in the Z plane. (35)

This is an ordinary differential equation for f(Z) , which is easily solved:
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- -~ 0(Z A(x,y) exp{f-iZ/,}, T,

where A(x,y) is an arbitrary constant with respect to X and Y . In

general, an additive constant, say C(x,y) , can be added to (36), 1-ut it cor1-

tributes nothing to the wave solution, and so we set it equal to zero.

We require that f be a periodic function of 0 . We have not yet spuv_-

fied i= e(x) , and so, without loss of generality, we can require that the

period be 2w . Substituting Z = ;/K ' iY into (36) and taking into accout

that K = 0' (x) = FO' (x) , this requirement is equivalent to the following:

0 0+2 7TE 2_,' 2RX11 I x¢ (G-+2 70

It then follows that

Fx
0(x) = _ { d / ( ,EH( )) , (37)

xo

where once again, without loss of generality, we have set a constant of integra-

tion equal to zero. Substituting into (36) and then using (31), we have the

solution:

*1 (x,y;0,Y) Re{f(Z)} = Re{A(x,y) exp ( )/T2 exp (i0(x))} (38)

From (21) we obtain the wave-elevation function:

n1 (x;0) = Re{b(x) exp (i0(x))} , (39)

where

b(x) = iA(x,0)/(D,(x,dc) (40)

From now on, for convenience, we drop the notation Re , but we imply that it

should be included in expressions like (38) and (39).

The situation represented by the solution j and n above is familiar

in applications of the WKB method: We now know the basic form of the wave

solution, but we do not know its amplitude anywhere. We know the phase func-

tion, 0(x) , but the (complex] amplitude A(x,0) is completely unknown.

In order to obtain more information about A(x,0) , we must consider the

second-order problem, given by (19) and (26). The form of the left-hand sides
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of (19) and (26) is identical to that of (18) and (25), Wrich gave the first-order

problem. So we can expect the second-order solution to represent waves like thiose

described in (38) and (39). That is, will contain a part that satisfies the

homogeneous counterpart of (26), and this part will dpt~nd on the same phase func-

tion as that in ." In addition, we note that the right-hand siC:.2s cf (1:) and

(26) are linear in and n, , and so the solution of the nonhur.,gyci.ous pr,:-

lem will also involve the same phase furction. So we now write:

= A 2 (xy) exp{(Y-I!)I T j} ex_ i:(x)} , (41)

where 0(x) is still given 3, (37) an, A2 (x,y) i6 an unknown function.

When (41) is substituted into (19) and (26), it is evident that the em:[ations

can be satisfied only if the right-hand sides of those equations are separately

equal to zero. This provides the further conditions needed for determining the

first-order solution. Substituting (38) and (39) into the right-hand sides of

(19) and (26), setting them equal to zero, and letting y = H , we find that:

iAKx + 2iKAx - 2ikAH,,/x + 2A,/D = 0 , (42)

Dxbx - 4yyb - 2iHxA/4 - i(xxA/Dx 0 , (43)

where we have used the fact that Hx = xXX + O (C) , which follows readily

from (3) and (4). We use this relationship again in (42), noting also that

K =- 1 / , to obtain the following:

Ay(x,0) = iAx(x,0) (44)

Then we use this result and the definition (40) in (43) to obtain:

+ Axx/Dx = 0. (45)

This differential equation is easily solved: A(x,0) = A 0/Dx , where A 0 is

strictly a constant. Thus we have found the form of A(x,0) , and so we have

for 1

pI(x,O;0,H) = {AO/Tx(x,EH)} eiO(x) (46)

The constp ' A0 can only be found from matching this solution with a near-

field (iU - ) solution. This situation arises because our fundamental equation

is an ellip ic equation (the Laplace equation), and the tipical WlKP wave approxi-

mation is not valid in a region near the body, where elliptic behavior domi-

nates the wave behavior.



III. INNER SOLUTION BY THE SOURCE-DISTRIBUTION METHOD

The solution obtained in the preceding section represents a ..:ve mota<n

with very short waves. To be precise, from (37) and (38), it is evident that

the local wave number is

0'(x) - c lP(X,CHI(X)) -(7)

Since, in general, Px 0 C(1) as £ - 0 , we have

0' (x) = 0(1/c) (47')

The assumption in (12) was really an anticipation of this condition.

If, however, Dx vanishes at some point, the wave number in (47) is

undefined at that point. Our conclusions must be reconsidered in a neighb-r-

hood of that point.

We expect that there will be a stagnation point on the downstream side of

the body, presumably at the intersection of the body and the free surface.

Such a stagnation point will be located at y c/2 , as shown by (3). We set

x = x0 at this point.*

At the stagnation point, we have tx= D = 0 . If, separately, we roquire

that 4x = 4y = 0 at the stagnation point, we create precisely the condition

mentioned above: The wave number is undefined. So we consider more carefully

the behavior of C near (x 0 ,c/2) . In Appendix A we show that

-x(X ,c/2) = E2 u 0 + o(C 2 ) , (48a)

y(X 0 ,c/ 2 ) = O(c 5 ) , (48b)

where

u 0 = - C(0)40 xx(x 0,O) , (48c)

C(0) = body curvature at y = 0 , (48d)

0 (x,y) = first term in an c expansion of P(x,y).t (48e)

*As in (I), we shall also take x = x0  at the downstream intersection of the

body and the x axis. Since the body is assumed to be smooth and to have a

vertical tangent at y = 0 , this practice should not cause significant error.
t 0(x,y) is the solution of the "rigid-wall" or "double-body" problem, inwhc
the free surface is replaced by a rigid wall at y = 0 See (I) for details.

- 12 -
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From these relationships, we now show that the wave numbxr is c(I/c 5 ) in aUD
small region near (x0 ,c/2)

We substitute (8) into the free-surface condition (5), eliminate the tcrms

that involve only the naive expansion, and then determine the leading-order

wavelike terms. In view of the estimates (48a) and (48b), wc can, i- lcIadinq

order, drop all terms except the following:

y x xx 0

This is directly comparable to the prol-rm statement in (I), and it is also

equivalent to (29) above. However, it is now being used in a small region

near the stagnation point, where, from (48a), Sx = O(c2) (In other worXz,

we now use this condition everjwhere for obtaining the lowest-order term in

the wavelike solution.) Thus we have

(y + 4D.O(E5 ) " 0

These two terms must be of the same order of magnitude, for otherwise

would not represent a wave motion. Furthermore, since the potential satisfies

the Laplace equation, 3/3x and d/ y should have similar order-of-magnitude

effects on These requirements can be satisfied only if

= o(E 5 ) (49))x ' ay

when acting on , which is equivalent to the statement that wave number is

O(e - 5 ) . This is vali.d only in a region near the stagnation point.

From (48a) we can also determine the order of magnitude of $ in the

neighborhood of the stagnation point. The complete potential, + , must

give no normal velocity component on the body. However, from (48a), 4x =

O(E2 ) at trne stagnation point, and so T/n = O(E 2 ) there. In order to

cancel this, we must have 3$/Pn = 0(E 2 ) too at the stagnation point. But,

in view of (49), this is possible only if

= O~e7) (50)

near the stagnation point. (Note that this still does not give us a in (10)

and (II). Those expressions are not valid near the stagnation point.)
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The next problem is to formulate and solve a precise near-field problem

for matching with the outer solution from Section II.

We define the near field as a region in which

x - x = O(E 5 ) ,

y - cH(x) = O(E5 ) J

It is sometimes convenient to define new near-field variables:

X = 'x-x)/J , (o0 (52)

We note the following rules for differentiation:

a _ -s 5 - 4T (x)- ,

X 3X ay (3
5__a (53)

y 3Y

since we shall solve the near-field problem just to one order of magnitude, we

shall have to use only the first term on the right-hand side of the first

formula of (53).

In the near field, we expand the potential:

=(x,y) = (x,y;c) + E7 (X,Y;c) + ... (54)

From this expansion and (3), we find that we can also write:

H(x) = H(x;e) + e H 1 (X;C) + .... (55)

The free-surface condition, (5), can now be expanded as follows:

07 + 7 + + 2+ [{(+x+ 7 c +
= .y ... 1xx+.]+ ..

y + x +xx + + C + ... 3  Xx+... (56)

tobesatisfiedon y = cH = cH + 5 H+ ... , which is equivalent to Y II +
to be satisfied o H = c F

In the near field, (P and its derivatives can be evaluated at x = x, y =C/2

with negligible (higher-order) error. Thus, for example,

H , S -_ . ., . . : _ .. .
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1 -

x(x,FH) = ix0,E/2 ) + (x-x 0 ) 4 x7(x 0 ,c/2) + t(H-) ( +.

( Cx(Xoe/2) + c 5 X~xx + L SH1 + EXH' (x 0 ) + ..

Jx(X0,c/2) % 2U 0  (57)

(See (48a)). The free-surface condition becomes, to leading order,

Dly + u0 xx = 0 on Y = H1 +

The body boundary condition is as follows:

3n= n +  n

From the naive expansion, worked out in (1), we have

0 on body, y < 0

= - 2EyC(O) 0xx (x 0 ,O) = 2cyu0  on body, 0 < y < c/2

Thus we require that

E7L-- = 0 on body, y < 0 , (59a)

7x 2cyu 0  on body, 0 < y < c/2 . (59b)

In terms of near-field variables, the last condition can be written:

Itwo-ud0(l+ 2c4Y) for X = 0 , -1/2c 4 < Y < 0 (60)

3t

-u 0  and to apply it in -< Y < 0. However, this would lead us to some

undefined integrals, and so we use (60) as stated above. Consistency can be

achieved later. We supplement (60) with the further condition:

ax = 0 for X = 0 , Y < -1/20 (6 '

This is consistent with (59a) in a small region in which y O(c)

Finally, it should be noted that, to leading order, (D satisfies the

Laplace equation:

L
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1XX + 1yy 0 in the fluid r..igi.

The problem just formulated for 4) would be straightforward to solve

except for one difficulty: The frue-surfac- conditiun, (-8), is to i e satis-

fied on Y = H1 + ... Usually in such problems it is easy to show txct t

boundary condition can be transferred t., th undisiturbed surface with ,2-

gible error, but such an operation i ,Lot ::rivial in the present troblem.

In terms of near-field variables, we ma-:t note that i/3Y = O(M) and 1=

O(i) , and so a simple Taylor expansio.. cannot Le used. In terms of the

original physical variables, we havu 41'" :(/ 5 ) and the boundary

has to be moved a distance cH- cH = E I + .. (c 5 ) . This shows aga~n

that the transfer is not trivial.

Nevertheless, it can be carried out. Our demonstration is not rigorous,

but it is convincing. We suppose first that (58) can be applied on Y = 0

Then we show that the solution so obtained satisfies the same condition

applied on Y = H (to an acceptable accuracy). We then presume that the

reverse is true, that is, that a solution satisfying (58) (as stated) also

satisfies (58) approximately when it is imposed on Y = 0 .

If (58) is satisfied on Y = 0 , we expect the solution to take the

form

1 (X,Y) = F 0 (x,y) + Fl(x,y) exp {iS(x,y)/c 5} , (62)

where the functions 20 (x,y) , F,(x,y) , and S(x,y) all vary "slowly" with

x and y , that is, 3/ x and /3y = 0(1) when operating on these func-

tions. (Such a result is well-known for the corresponding "wavemaker prob-

lem." See Appendix B.) In fact, in the near field, F (x,y) is a constant,

and

exp{iS(x,y)/c 5} exp {iv(X+iY)}

where

V i/u2
- 1/u 0

and so we see explicitly that S(x,y) v{(x-x 0 )+ +iy-cHx)]1 which indeed
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varies slowly with x and y The function F 0 (x,y) Yc'resents a nonwave-

like motion, a local effect, that decays with distance from the bouy.

There is negligible difference whether we evaluatc F 0 (x,y) , Fi(x,y),

and S(x,y) on Y = 0 or on Y =  + and so we need consider only the

exponential factor in (62), which does change r.-ipidly with x and y We

observe that

exp {iS(x,cH)/E5} = exp {i[S(x,:ji', 4 t (i{-H)Sy(x,EF-) + . C.

= exj, {iS (X, H) /E: j• exp 'iH I S y (x, El) } l+ o(i)}

Thus, if we evaluate the exponential function on Y = H +... (which is equi-

valent to y = EH ) instead of on Y = 0 (equivalent to y = cH ), we effec-
tively multiply by a factor exp {iH I S y(X,EH ) j

Now we assume explicitly that (62) satisfies (58) on Y = 0 , that is,

2 2

+ = (Foy + u0FOxx)y

Y=O Y= 0
+ 1F x( U2-k- 32 0

The first term on the right-hand side varies slowly in x , whereas the second

term varies very rapidly. Then the sum can equal zero only if each term sepa-

rately equals zero. So we have

2
SF 0y + u 0F0  0

]22 J on Y=0 (y H+ u0-- 3 [F1 exp {iS/E
5 }] = 0

On the other hand, let us evaluate the left-hand side of (58) on Y = +...

(1+ u0 2xx)s (Foy + u0FOxx) +

1exp {iHIsy(X,CH)}(-- + U3 T) [F1 exp (iS/E
5 ) Io +

Each term on the right-hand side is separately equal to zero (to the order of

magnitude considered here), and so we see that (58) is approximately valid if

applied on Y = H + Thus we have shown the stated result: If (58) is

satisfied on Y =0 it is also satisfied approximately on Y = HI+... Now

we assume that the converse is true, which means that we can simplify our

boundary-value problem by imposing (58) on Y = 0
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The solution will be constructed with the fji1o.hicn ( ,ri fucLion:

G(X,Y; F,rI) lon [(X-F)2 + (Y-n) J ] + ... 1j,. ;(:K- :  + , .

1 dk k (Y+rj)('+ )
+ e cos k(X-',) - sin .(K-_) )

M is a constant to be determined. Tht, intu(qril to 1',. inttvrprtted In ,I

principal-value sense (dcnoted by the tar throuc(P the int,-qral sitj). !t i

Green function gives the potentiE,! at 9 orrt.sl.ondin j to a unit ;ourc.

located at (<,f) However, an dad±tJ ... %i wave disturbai.(- K s .:n intro-

duced with the M term. Th. above Gren fu:iction uatisfi-s the La;lrice

equation and the free-surface condition, (58). It rel rese.nts the following

wave motion very far away:

Gx(X,Y; ,r) - vC± ( ) e cos v(X-,) as X- C , (4)

Using this fundamental solution, we express the solution of our problem in

the following form:

0
VY

PICX,Y) W(n) G(X,Y;0, r) dri + De cos X , (65)

where i(n) is an unknown function to be determined so that the body bouniciry

condition, (60) and (60'), is satisfied. The extra term on the right-hand side

of (65) is easily recognized as a solution of the homogeneous problem, since it

yields no contribution to (IX at X = 0

We substitute (-5) into the body boundary condition, obtaining:

VY - u 2 ) -l/2 Y 0
X 2 (Y) -fMe o  ( ) dn (66)-, [ 0 ,Y I 1,' . :

This is a very simple integral equation for (Y) T ., -I,!t 1n can oivioi, ly

be expressed in the form:

VY

(Y) = j0 (Y) + , k,,7)

where

-2u 0 ( + 2 Y) , -1/P0 (Y) (Oi)

Substituting (67) and (68) hack into (66), we ebt tji v: Vt



- 19 -

E - 1 -0 M c - L- . } (

The constants M and D are not yet known, but otherwise we know everythinq

in (65), and so we have obtained a solution that satisfies (i) the Laplace

equation, (ii) the free-surface condition, and (iii) the body condition.

Earlier, we assumed that there was a stagnation point at (x0,i2}

(or X = 0 , Y = 0 ). We now find that this condition is sufficient for

determining the constants M and D .ircm (54) and (-,I), we have

- + (7)

y Dy 3Y

From the formulation of the ¢ problem, we know that

yY- x -xx -C (0) (X0,0) + o(c , 71)

the last estimate being valid at the stagnation point (See Appendix A). So we

must have

y_ + 3C2 (o)ix x
3 (x0,O) = C u2 xx(X0,0) (72)

at X = 0 , Y = 0 in order that D(/Dy , as expressed in (70), may vanish at

the stagnation point. However, from the solution as given in (65), we find

that D¢I/3Y is undefined (infinite) at this point unless o(O) = 0 To see

this explicitly, we differentiate (65):

_ (I) IG(0,Y;0,"') dr + vDe (73)
8X=0 _-

From the definition (.f the Green function, (63), we have

0G 1 1 + i + 1jdkke
3 =Y = 2-a Y - l TI k- v

ci dkk kn a y

-0as Y -0

00
The last expression behaves as -1/7q as n - 0 , which shows that the integral

in (73) diverges as Y 0 , unless it happens that p(0) = 0 So we now

impose such a condition on p , and this then determines M

0 = 1(0) = P0 (0 + E

2u 4u0M 1 2c 4{ e-'/2c"
=-2u 0  0 - .- M

where we have used (67), (68), and (69). Solving for M , we obtain:
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M . ......... (74,
1 (4-,/v) ti - .. xp(- / 1 4,/v

It is useful also to note the following cofnl-iuenc.S,

E - .(() 2u , (7

2u0,J ' Y  1 - Y1 1 -] 2l '  Y ".0

2u e , Y <.: i 2 I

The above choice of Y guaratc, L.,.aL rem in1 frilitu, at the :tag-
ly

nation point, but it does not "-.t tc d ro (72) 111 order to ens:ure that: (7,,)

is satisfied, we must evaluate the irtejral in (73) as Y , and then choose

the value of D appropriately. The uvaluation of the iJLtu~gral.-; will kc aUnd

in Appendix (7. From these results, we otain:

D u 0 0xx(x 0 ,O)/ u (x 0 ,u) = 7C (w)q(x, ,u) f77)

In summary, we note that the solution in the inner region i:s e_ xparda.d as

in (54), $ being the naive solution that was worked out in (1). T'h next

term, F7$ , is obtained in the form given in (65), with .(Y) qiveri in (76)

and D in (77). This completes the inner solution for our }urposes.

Before matching this inner solution with the outer solution, it is worth-

while to comment on some unusual aspects of the ?u~egolnganalysis:

(i) Normally in using matched asymptotic expansin , o(l- on,tilns ilil,-r

and outer expansions each of which is nonunique, in some way. Matchinq of the

two expansions then removes the nonuniqueness in each. How(,ver, in our }rob-

lem, we have obtained a complete (unique) near-field solution, at least to

leading order of magnitude. This appears at first sight to eliminate the

possibility of satisfying a radiation condition in the far field. iII fact,

this is precisely what happens, and fortunately too, for there is no radiation

condition possible in the far field. In steady-motion problems, we usually

specify that there should be no waves upstream; this is an adequate radiation

condition in two dimensions. In our problem, however, the downstream waves

appear only in a surface layer of vanishing thickness, and these waves are?

effectively isolated from the upstream fluid region. One might say that there

is no upstream region at all, at least insofar as it might affect the waves
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downstream of the body. Then one must seek an alternatlvc condition to make

the solution unique. As described above, we have used thu- ,olutio'n behavior

at the stagnation point to provide such a condition.

(ii) The Green function introduced in (63) is rather unusual becduse of

the presence of the last term. The contribution of this term to 1i;

interesting. Effectively, it produces a second solution of the homogi -±eou' 4

problem. The one obvious solution of the homogeneous problem is the last

term in (65). But one can construct others if some degree of singulirity is

tolerated at the origin. The M term in the Green function produces a solu-

tion of the homogeneous problem with precisely the singular character at the

origin that is needed to cancel the singular velocity that would otherwise

arise from the source distribution. This is what was accomplished in deriving

the value of M in (74).
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IV. MATCHING OF INNER AND OUTER SOLUTIONS -

We now use the inner solution, which is completely kxowr, c dJ:t rm

the unknown amplitude and phase of the waves ii. the outer region. :rom (8),

(10), and (38), the outer solution can be written:

(x,y) $(x,y;) + 1+ex [ (Y - H)/ x] Re {A(x,y) exp [iC(x)]. (73)

The rapidly varying phase function, ..(x) , was given in (37); tlhe ccmI.x

amplitude function, A(x,y) , was partially determined:

A(x,) = A/( x(x,t H(x)) ,(7'

where A 0 is a complex constant. All that remains to be determined is A.
and a . We accomplish this by matching 4*x(X,EH) in the two regicns.

For the moment, let us omit the Re notation in (78), just as we did

earlier. We write out x(Xy)

a+' H' 2 (Y-H)4)xx +io,()}xX,Y) = Tx(x,y;c) + Ey Ax) - 2  3

1x x

exp [(y)/2]exp [iO(x) (80)

On y = £H (or Y = H*), this simplifies:

(x(X,EH) = x(X,EH;) + '
a L Ax,0) +A(x,0)- + i'D (x) •Jexp [i(x)]

+ ... (80')

Now we change over to near-field variables, as defined in (52). We note that

W '(- --- -, as X - 0
' ) - 2(x,E:H) C u" "0

______ x- xo0  xI0(x)=

fEu2[1+ O(E3)] S2J

Note the difference in the definition of Y in the inner and outer regions:

Y=y/E: in the outer region (see (13)), whereas Y= [y-E H(x)]/c 5 in the inner
region (see (52)).

- 22-
Im
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The estimate (48a) has been used here. Now we keep just the leading term in

(80'), with X fixed:

(x (x,EH) 1 Px(x,EH;c) - i(A 0 /uO) CL-6 eiX/u 0 (81)

This is the result that we will match to the inner solution.

The inner solution was given in (54), (65), (76), and (77). Let us fin d

the derivative that matches (81):

x(X,y) = x(XY;E) + E£7[ lxxx + Tiyx +

- Px(xy;C) + C .X +

We must evaluate this as X - in order to perform the matching. Introducing

(64) into (65), differentiating with respect to X , and evaluating the result-

ing integral, we find that

D -v{4c'u 0 cos vX + Dsin vX} e % - 5C2(0)0 (x 0 0) sinX/u?

+ ... . 82)

In (82), the term containing cos vX comes from the integral in (65), and the

term containing sin vX comes from the homogeneous solution in (65). As is

apparent here, the latter is of lower order of magnitude and thus dominates in

(82).

Now we match these near-field results with the real part of (81), the

result being that

A0 = - C 5 (0) (x o ,0) (83)

We also find that

1 i (84)

We can substitute back into the formulas for P or for Dx in the far field.

The latter, in particular, gives us:

x
~xxH;) i 11 C5 (0) x(x0,0 rir

x(,£Hx))= (XH;£ + &I I exp - + ...."

0  (85)

This is our final form of the solution in terms of 4)

0 -



V. WAVE RESISTANCE

Exact nonlinear formulas are readily available for computing wave resis-

tance if the fluid velocity and free-surface disturbance are known. From

Wehausen and Laitone (196k), Equation (8.6), for example, we have:

SEH(X)

R = -pU2L dy - [ )- 1 2  + o gL E x , (81 )
2 2

where R is the wave resistance, and all other quantities are as previously

defined. The right-hand side can be computed at any x downstream of the

body, but we simplify the task by letting x -*
The general far-field expression for Px(x,y) has been given in (80). As

x +- , the following approximations can all be used:

1~ ,' 1x --X 0 , 4 -- 0

A(x,y) A0 , Ax  0
(87)

0' W - - i/.

Noting that A0  is a real constant and taking the appropriate real parts in

(80) (see (78)), we obtain the asymptotic estimate,

* x(x,y) 1 + E11A 0 eY/ sin [0(x)] , (88a)

valid as x + .Similarly we find that

Py (x,y) E IA [0 (x)] (88b)

Moreover, from (9), (11), (39), and (40), we also have:

H(x) - ll0sin [0(x)] (88c)

Carrying out the integration in (86), with the upper limit of the integral

replaced (consistently) by zero, we obtain finally that

R _ 1 C23A 2  1 E23cI0(o) 12 (x0Or) (89)
(i/2)pU2 L 2 0 2 0 xx

- 24 -
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where, as before, C(O) is the body curvature at the ,Atersecti.,n of the body

and the undisturbed free surface and 0 (x,y) is the first term in the naiv:,

expansion (the potential for the double-body flow). CW  is the .avc-reslsta&,-

coefficient for the 2-D body.

It can hardly be surprising that the wave resi3stance depends o, thc_ :LaI~

of the body only near the free surface, since the ,,,ave motion occurs enr.ir'-iy

in a very thin layer, in fact, in a vanishingly thin layer, near tl, lev;l of

the free surface, and the wave motion 1 ir.duced by the peculiar nature of t-,

streaming flow on the body near this level (see (I)). Furthermore, we assumed

that the body has a vertical tangent here, and so it is also reasonable to

expect that the curvature should have a dominant effect in creating waves.

If the curvature were ,o at y = 0 , we would expect the generation of

waves to depend primarily on higher-order derivatives of the body shape in

this same region. Presumably wave amplitude and wave resistance would then be

of even higher order than in the case presented.

We can only speculate now what would be the result if the body contour

were analytically straight in some finite neighborhood of y = 0 . Our specu-

lation is that waves and wave resistance would be small of exponential order

as in the case of a submerged body.
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APPENDIX A. STAGNATION-POINT CONDITIONS ON p

Here we obtain the estimate given in (48c) and (71),

From (I), from the definition of the naive expansion,

x -. ox + x +

On the body very close to the free surface,

Jx = - Jn

If the body shape has continuous curvature and a vertical tangent at y

we have, from Equation (42) of (I),

0x = O(E 3 )

From Equation (62) of (I),

Ix lbody 2y C(0) 0xx(X 0 ,0) for 0 < y < c/2

where C(0) and p0 (x,y) are given by (48d) and (48e). Putting these results

together gives us:

-x(X0 2 E2C(0) 0xx(x0,0) , (A.1)

the relationship given in (48a).

To obtain (71) (and also (48b)), we start from the free-surface condition

(5), which is still valid (by definition) if D is replaced by 4 . Thus

_E2{(2 + 2 yDxy + (yy} on y = EH(x)y x xx x yxy y yy

On the right-hand side, the first term is the lowest-order term, and so, sub-

stituting from (A.1), we obtain:

DE 5C2 2o) 0 (X01 0)

the desired result, (71).
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APPENDIX B. COMPONENTS OF THE INNER SOLUTION

In (b2), the inner solution was written as the sum of two parts:

i(X,Y) = F 0 (x,y) 4 F,(x,y) exp iS(x,y)/5} , (62)

where it was stated that P0(x,y) , F,(x,y) , and S(x,y) all vary "I ,iy"

with x and y , although this expression represents waves of very small

wavelength.

Such statements can be verified directly in the analogous "wavmaker

problem :"

x= in 1X (i'l)

x = f(y) on x = 0 , y < 0 , (B.2)

V - y = 0 on y= 0, x > 0 (B.3)

This is the mathematical statement of the problem if the vertical wall, x = 0

moves with normal velocity component f (y) exp (iwt) , where w is the radian

frequency of the motion and v = w2/g is the corresponding wave number. Th(

potential for the problem is f(x,y) exp (iwt) . Of course, a radiation cordi-

tion must also be imposed. This problem is very similar to the near-field

problem considered in Section III.

The wavemaker problem has been studied by many people, and we can write

down the solution directly:

P(x,y) = (x,y) + f(x,y) , (p.4)

where

1P Vy
(x,y) ye A 0 sinvx + Bcos vx] , ( .5)

$(x,y) = dk A(k)e-kX (k cos ky + v sin ky) (B.6)

0

The term in (B.5) containing B is the solution of the homogeneous problem,

and so B is arbitrary. The constant A in (B.5) and the function A(k)
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in (B.6) are given by the following:

ro y
A, = 2 j dy f(y) ey (E7 .7)

0

A(k) 2  f dy f(y) (kcos ky + 0 sin ky) (i.8)m A~k) = k (k2+v2)

In the above problem, -f we allow v (or w ) to become very large, it

is immediately obvious that 4x and $y are O(V;) . We can express this

symbolically by writing

x N = 0(..9)

Since p represents waves of wavenumber v , this is all rather obvious.

What is not so obvious is that

= 0(i) (B.i0)x ' y

when they operate on 4(x,y) , even if v To show this, substitute (P.8)

into (-s.6), interchange order of integration, and write the potential in terms

of a function of a complex variable z = x + iy

p(x,y) = R 2e fo dri f(n) (kcos kn + vsinkn)

-coC
0

- Re ( dri f (n) (log f ZtT> - 2e-\ i(z+il) E (-iV(z+in1))))

where

d0 -t
E1 (u) =, the exponential integral

u
As v- , note that

E. (vu) e for larg ul < 31/2

± vu

Using this asymptotic estimate, we now find that, as v ,

pxdf(n) 1 + 0 (1 /v)x y - 0 z-i9 z+in
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1 d f () + 0 ( / ;
$XX - -dxy T- (zirl)2 - z+i r,)

etc. This is the result indicated by (.10). It means that (x,') varies

"slowly" even if the wavenumber becomes asymptotically large.

In the problem in Section III, we had the free-surface condition

VPy + xx = 0 on y = 0 , (E.11)

instead of (B.3). The solution can be written as in (B.4), with (x,y) giver

by (h.5) and
poo -kx

,(x,y) jdkA(k) e (vcosky - ksinky) (i,.12)
0

In this problem, one can show that

0A0  : 2 J dy f(y) {i- eVY} ; (B.13)

0
A0k) - dyf(y) {v(i- cosky) + ksinky} (H .14)A~k) Tk (k2+vl)L

Then it is straightforward to show results identical to those obtained above

for tne wavemaker problem, as summarized in (B.9) and (P.10).

|p
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APPENDIX C. EVALUATION OF SEVERAL INTEGRALS

We chose the arbitrary constant M in the Green function (see (63)) to

ensure that would be bounded at X = 0 even as Y - 0 . The result

was given in (74). This left the constant 0 , which first appeared in (65),

as a still undetermined quantity. Its value was to be found by substituting

from (73) into (72). To carry this out, we have to evaluate the integral in

(73) for X = Y = 0 . Its value turns out to be negligible, but this result

is not obvious, and so we derive it here.

From (73) and (72), witio Y = 0 in the former, we have

3 2 3G I  < i

E u 0 xx (x0 ,0) - vD = drn(i ) 3 Y.

=0

2
(Recall that v = 1/u0 .) Following (73), it was shown that

3G_ 1 fdkke k

X=y=0
=0

The value of P(n) was given in (76). We substitute these results into (.l)

3 
2  2U f do e dk k e k lE u0¢0xx(X0,0) -vD 7T d r e n  k- v

2u 0 10 dkkke
- dri (1i+ 2E:4 n) k e

Tr j d (l2h)f k -v
1/2F_4

4u0E k{l -k/264 ,
- 4ut - 1111{i-e j (C.2)

0

- 0 y +log v+ ... } as v ,(C.3)
71V 2 4  V

where y is Euler's constant. The expression in (C.2) is found after some

manipulation of the preceding line, and the estimate in (C.3) follows from

standard asymptotic estimates of exponential integrals.

The right-hand side of (C.3) is O(c 4 log 4) , whereas the first term on

the left-hand side is O(E 3 ) . So we conclude that

D 32u00xx(X0,0)/ , (C.4)

as stated in (77).
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